Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 589
Filtrar
1.
Photochem Photobiol Sci ; 23(4): 719-729, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38441849

RESUMO

The bioluminescence system of luminescent beetles has extensive applications in biological imaging, protein labeling and drug screening. To explore wild luciferases with excellent catalytic activity and thermal stability, we cloned the luciferase of Pygoluciola qingyu, one species living in areas of high temperature and with strong bioluminescence, by combining transcriptomic sequencing and reverse transcription polymerase chain reaction (RT-PCR). The total length of luciferase gene is 1638 bp and the luciferase consists 544 amino acids. The recombinant P. qingyu luciferase was produced in vitro and its characteristics were compared with those of eight luciferases from China firefly species and two commercial luciferases. Compared with these luciferases, the P. qingyu luciferase shows the highest luminescence activity at room temperature (about 25-28 â„ƒ) with similar KM value for D-luciferin and ATP to the Photinus pyralis luciferase. The P. qingyu luciferase activity was highest at 35 â„ƒ and can keep high activity at 30-40 â„ƒ, which suggests the potential of P. qingyu luciferase for in vivo and cell application. Our results provide new insights into P. qingyu luciferase and give a new resource for the application of luciferases.


Assuntos
Besouros , Vaga-Lumes , Animais , Vaga-Lumes/genética , Besouros/genética , Besouros/metabolismo , Sequência de Aminoácidos , Luciferases/química , Luciferases de Vaga-Lume/metabolismo , Clonagem Molecular , Medições Luminescentes
2.
Cell Transplant ; 33: 9636897231224174, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38235662

RESUMO

Fireflies produce light through luciferase-catalyzed reactions involving luciferin, oxygen, and adenosine triphosphate, distinct from other luminescent organisms. This unique feature has revolutionized molecular biology and physiology, serving as a valuable tool for cellular research. Luciferase-based bioluminescent imaging enabled the creation of transgenic animals, such as Firefly Rats. Firefly Rats, created in 2006, ubiquitously express luciferase and have become a critical asset in scientific investigations. These rats have significantly contributed to transplantation and tissue engineering studies. Their low immunogenicity reduces graft rejection risk, making them ideal for long-term tracking of organ/tissue/cellular engraftments. Importantly, in the islet transplantation setting, the ubiquitous luciferase expression in these rats does not alter islet morphology or function, ensuring accurate assessments of engrafted islets. Firefly Rats have illuminated the path of transplantation research worldwide for over a decade and continue accelerating scientific advancements in many fields.


Assuntos
Vaga-Lumes , Transplante das Ilhotas Pancreáticas , Animais , Ratos , Vaga-Lumes/metabolismo , Luciferases , Animais Geneticamente Modificados , Diagnóstico por Imagem , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Medições Luminescentes
3.
Methods Mol Biol ; 2722: 79-87, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37897601

RESUMO

Thermospermine (Tspm) is a polyamine found to play a crucial role in xylem development in Arabidopsis thaliana. Tspm promotes the translation of the SACL genes by counteracting the activity of a cis element in their 5'-leader region that suppresses the translation of the main ORF. Here we describe a method to test the Tspm-dependent translational regulation of the 5'-leader of the SACL mRNAs in Nicotiana benthamiana leaves and A. thaliana mesophyll protoplasts with a dual luciferase assay. The dual luciferase reporter system is used to assess gene expression and is based on the detection of the Firefly luciferase luminescence driven by a specific promoter. However, it can also be used to evaluate the cis elements found in 5'-leader that influence the translation of the main ORF in a transcript. We have used a modified version of the pGreenII 0800 LUC plasmid carrying a double 35S promoter, followed by a poly-linker sequence in phase with the Firefly luciferase gene (pGreen2x35SLUC) where the full 5'-leader sequence of SACL3 was cloned. This construct was used for Agrobacterium tumefaciens infiltration of N. benthamiana leaves and for transfection of A. thaliana mesophyll protoplasts, followed by mock or Tspm treatments. The resulting translation of the Firefly luciferase in these organisms and conditions was then tested by measuring luminescence with the dual luciferase assay and a luminometer. These experiments have allowed us to quantify the positive effect of Tspm in the translation of SACL3 transcripts.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Xilema/metabolismo , Genes Reporter , Regulação da Expressão Gênica de Plantas
4.
Int J Biol Macromol ; 235: 123835, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36870640

RESUMO

Although synonymous mutations have long been thought to lack striking results, a growing body of research shows these mutations have highly variable effects. In this study, the impact of synonymous mutations in the development of thermostable luciferase was investigated using a combination of experimental and theoretical approaches. Using bioinformatics analysis, the codon usage features in the Lampyridae family's luciferases were studied and four synonymous mutations of Arg in luciferase were created. An exciting result was that the analysis of kinetic parameters showed a slight increase in the thermal stability of the mutant luciferase. AutoDock Vina, %MinMax algorithm, and UNAFold Server were used to perform molecular docking, folding rate, and RNA folding, respectively. Here, it was assumed that in the region (Arg337) with a moderate propensity for coil, synonymous mutation altered the rate of translation, which in turn may lead to a slight change in the structure of the enzyme. According to the molecular dynamics simulation data, local minor global flexibility is observed in the context of the protein conformation. A plausible explanation is that this flexibility may strengthen hydrophobic interactions due to its sensitivity to a molecular collision. Accordingly, thermostability originated mainly from hydrophobic interaction.


Assuntos
Simulação de Dinâmica Molecular , Mutação Silenciosa , Simulação de Acoplamento Molecular , Luciferases de Vaga-Lume/metabolismo , Dobramento de RNA
5.
PLoS One ; 18(1): e0279875, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36662734

RESUMO

Bioluminescence imaging (BLI) of gene expression in live animals is a powerful method for monitoring development, tumor growth, infections, healing, and other progressive, long-term biological processes. BLI remains an effective approach for reducing the number of animals needed to monitor dynamic changes in gene activity because images can be captured repeatedly from the same animals. When examining these ongoing changes, it is sometimes necessary to remove rhythmic effects on the bioluminescence signal caused by the circadian clock's daily modulation of gene expression. Furthermore, BLI using freely moving animals remains limited because the standard procedures can alter normal behaviors. Another obstacle with conventional BLI of animals is that luciferin, the firefly luciferase substrate, is usually injected into mice that are then imaged while anesthetized. Unfortunately, the luciferase signal declines rapidly during imaging as luciferin is cleared from the body. Alternatively, mice are imaged after they are surgically implanted with a pump or connected to a tether to deliver luciferin, but stressors such as this surgery and anesthesia can alter physiology, behavior, and the actual gene expression being imaged. Consequently, we developed a strategy that minimizes animal exposure to stressors before and during sustained BLI of freely moving unanesthetized mice. This technique was effective when monitoring expression of the Per1 gene that serves in the circadian clock timing mechanism and was previously shown to produce circadian bioluminescence rhythms in live mice. We used hairless albino mice expressing luciferase that were allowed to drink luciferin and engage in normal behaviors during imaging with cooled electron-multiplying-CCD cameras. Computer-aided image selection was developed to measure signal intensity of individual mice each time they were in the same posture, thereby providing comparable measurements over long intervals. This imaging procedure, performed primarily during the animal's night, is compatible with entrainment of the mouse circadian timing system to the light cycle while allowing sampling at multi-day intervals to monitor long-term changes. When the circadian expression of a gene is known, this approach provides an effective alternative to imaging immobile anesthetized animals and can removing noise caused by circadian oscillations and body movements that can degrade data collected during long-term imaging studies.


Assuntos
Diagnóstico por Imagem , Luciferases de Vaga-Lume , Camundongos , Animais , Luciferases/genética , Luciferases/metabolismo , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Expressão Gênica , Luciferinas , Medições Luminescentes/métodos
6.
Photochem Photobiol Sci ; 22(4): 893-904, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36681778

RESUMO

Beetle luciferases were classified into three functional groups: (1) pH-sensitive yellow-green-emitting (fireflies) which change the bioluminescence color to red at acidic pH, high temperatures and presence of heavy metals; (2) the pH-insensitive green-yellow-emitting (click beetles, railroad worms and firefly isozymes) which are not affected by these factors, and (3) pH-insensitive red-emitting. Although the pH-sensing site in firefly luciferases was recently identified, it is unclear why some luciferases are pH-insensitive despite the presence of some conserved pH-sensing residues. Through circular dichroism, we compared the secondary structural changes and unfolding temperature of luciferases of representatives of these three groups: (1) pH-sensitive green-yellow-emitting Macrolampis sp2 (Mac) and Amydetes vivianii (Amy) firefly luciferases; (2) the pH-insensitive green-emitting Pyrearinus termitilluminans larval click beetle (Pte) and Aspisoma lineatum (Al2) larval firefly luciferases, and (3) the pH-insensitive red-emitting Phrixotrix hirtus railroadworm (PxRE) luciferase. The most blue-shifted luciferases, independently of pH sensitivity, are thermally more stable at different pHs than the red-shifted ones. The pH-sensitive luciferases undergo increases of α-helices and thermal stability above pH 6. The pH-insensitive Pte luciferase secondary structure remains stable between pH 6 and 8, whereas the Al2 luciferase displays an increase of the ß-sheet at pH 8. The PxRE luciferase also displays an increase of α-helices at pH 8. The results indicate that green-yellow emission in beetle luciferases can be attained by: (1) a structurally rigid scaffold which stabilizes a single closed active site conformation in the pH-insensitive luciferases, and (2) active site compaction above pH 7.0 in the more flexible pH-sensitive luciferases.


Assuntos
Besouros , Animais , Besouros/metabolismo , Luciferases de Vaga-Lume/metabolismo , Sequência de Aminoácidos , Luciferases/química , Vaga-Lumes , Medições Luminescentes
7.
Luminescence ; 38(2): 216-220, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36409206

RESUMO

The development of bioluminescence-based tools has seen steady growth in the field of chemical biology over the past few decades ranging in uses from reporter genes to assay development and targeted imaging. More recently, coelenterazine-utilizing luciferases such as Gaussia, Renilla, and the engineered nano-luciferases have been utilized due to their intense luminescence relative to firefly luciferin/luciferase. The emerging importance of these systems warrants investigations into the components that affect their light production. Previous work has reported that one marine luciferase, Gaussia, is potently inhibited by copper salt. The mechanism for inhibition was not elucidated but was hypothesized to occur via binding to the enzyme. In this study, we provide the first report of a group of nonhomologous marine luciferases also exhibiting marked decreases in light emission in the presence of copper (II). We investigate the mechanism of action behind this inhibition and demonstrate that the observed copper inhibition does not stem from a luciferase interaction but rather the chemical oxidation of imidazopyrazinone luciferins generating inert, dehydrated luciferins.


Assuntos
Cobre , Luciferases de Vaga-Lume , Cobre/farmacologia , Luciferases/genética , Oxirredução , Luciferases de Vaga-Lume/metabolismo , Luciferina de Vaga-Lumes , Medições Luminescentes/métodos , Luminescência
8.
Anal Chem ; 95(2): 668-676, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36548400

RESUMO

It is estimated that more than 2 billion people are chronically infected with the intracellular protozoan parasite Toxoplasma gondii (T. gondii). Despite this, there is currently no vaccine to prevent infection in humans, and there is no recognized curative treatment to clear tissue cysts. A major hurdle for identifying effective drug candidates against chronic-stage cysts has been the low throughput of existing in vitro assays for testing the survival of bradyzoites. We have developed a luciferase-based platform for specifically determining bradyzoite survival within in vitro cysts in a 96-well plate format. We engineered a cystogenic type II T. gondii PruΔku80Δhxgpr strain for stage-specific expression of firefly luciferase in the cytosol of bradyzoites and nanoluciferase for secretion into the lumen of the cyst (DuaLuc strain). Using this DuaLuc strain, we found that the ratio of firefly luciferase to nanoluciferase decreased upon treatment with atovaquone or LHVS, two compounds that are known to compromise bradyzoite viability. The 96-well format allowed us to test several additional compounds and generate dose-response curves for calculation of EC50 values indicating relative effectiveness of a compound. Accordingly, this DuaLuc system should be suitable for screening libraries of diverse compounds and defining the potency of hits or other compounds with a putative antibradyzoite activity.


Assuntos
Toxoplasma , Humanos , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Atovaquona/metabolismo , Atovaquona/farmacologia , Luciferases/genética , Luciferases/metabolismo
9.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36555716

RESUMO

The application of in vivo bioluminescent imaging in infectious disease research has significantly increased over the past years. The detection of transgenic parasites expressing wildtype firefly luciferase is however hampered by a relatively low and heterogeneous tissue penetrating capacity of emitted light. Solutions are sought by using codon-optimized red-shifted luciferases that yield higher expression levels and produce relatively more red or near-infrared light, or by using modified bioluminescent substrates with enhanced cell permeability and improved luminogenic or pharmacokinetic properties. In this study, the in vitro and in vivo efficacy of two modified bioluminescent substrates, CycLuc1 and AkaLumine-HCl, were compared with that of D-luciferin as a gold standard. Comparisons were made in experimental and insect-transmitted animal models of leishmaniasis (caused by intracellular Leishmania species) and African trypanosomiasis (caused by extracellular Trypanosoma species), using parasite strains expressing the red-shifted firefly luciferase PpyRE9. Although the luminogenic properties of AkaLumine-HCl and D-luciferin for in vitro parasite detection were comparable at equal substrate concentrations, AkaLumine-HCl proved to be unsuitable for in vivo infection follow-up due to high background signals in the liver. CycLuc1 presented a higher in vitro luminescence compared to the other substrates and proved to be highly efficacious in vivo, even at a 20-fold lower dose than D-luciferin. This efficacy was consistent across infections with the herein included intracellular and extracellular parasitic organisms. It can be concluded that CycLuc1 is an excellent and broadly applicable alternative for D-luciferin, requiring significantly lower doses for in vivo bioluminescent imaging in rodent models of leishmaniasis and African trypanosomiasis.


Assuntos
Parasitos , Tripanossomíase Africana , Animais , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Parasitos/metabolismo , Medições Luminescentes/métodos , Luciferases/genética , Luciferases/metabolismo , Luciferinas , Luciferina de Vaga-Lumes/metabolismo
10.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36499386

RESUMO

The regulation of translation by RNA-induced silencing complexes (RISCs) composed of Argonaute proteins and micro-RNAs is well established; however, the mechanisms underlying specific cellular responses to miRNAs and how specific complexes arise are not completely clear. To explore these questions, we performed experiments with Renilla and firefly luciferase reporter genes transfected in a psiCHECK-2 plasmid into human HCT116 or Me45 cells, where only the Renilla gene contained sequences targeted by microRNAs (miRNAs) in the 3'UTR. The effects of targeting were miRNA-specific; miRNA-21-5p caused strong inhibition of translation, whereas miRNA-24-3p or Let-7 family caused no change or an increase in reporter Renilla luciferase synthesis. The mRNA-protein complexes formed by transcripts regulated by different miRNAs differed from each other and were different in different cell types, as shown by sucrose gradient centrifugation. Unexpectedly, the presence of miRNA targets on Renilla transcripts also affected the expression of the co-transfected but non-targeted firefly luciferase gene in both cell types. Renilla and firefly transcripts were found in the same sucrose gradient fractions and specific anti-miRNA oligoribonucleotides, which influenced the expression of the Renilla gene, and also influenced that of firefly gene. These results suggest that, in addition to targeted transcripts, miRNAs may also modulate the expression of non-targeted transcripts, and using the latter to normalize the results may cause bias. We discuss some hypothetical mechanisms which could explain the observed miRNA-induced effects.


Assuntos
MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Genes Reporter , Regiões 3' não Traduzidas , Complexo de Inativação Induzido por RNA/genética , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Sacarose
11.
Biosensors (Basel) ; 12(11)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36354427

RESUMO

A bioluminescence-based assay for ATP can measure cell viability. Higher ATP concentration indicates a higher number of living cells. Thus, it is necessary to design an ATP sensor that is low-cost and easy to use. Gold nanoparticles provide excellent biocompatibility for enzyme immobilization. We investigated the effect of luciferase proximity with citrate-coated gold, silver, and gold-silver core-shell nanoparticles, gold nanorods, and BSA-Au nanoclusters. The effect of metal nanoparticles on the activity of luciferases was recorded by the luminescence assay, which was 3-5 times higher than free enzyme. The results showed that the signal stability in presence of nanoparticles improved and was reliable up to 6 h for analytes measurements. It has been suggested that energy is mutually transferred from luciferase bioluminescence spectra to metal nanoparticle surface plasmons. In addition, we herein report the 27-base DNA aptamer for adenosine-5'-triphosphate (ATP) as a suitable probe for the ATP biosensor based on firefly luciferase activity and AuNPs. Due to ATP application in the firefly luciferase reaction, the increase in luciferase activity and improved detection limits may indicate more stability or accessibility of ATP in the presence of nanoparticles. The bioluminescence intensity increased with the ATP concentration up to 600 µM with a detection limit of 5 µM for ATP.


Assuntos
Ouro , Nanopartículas Metálicas , Prata , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Trifosfato de Adenosina , Luciferases
12.
Virology ; 576: 30-41, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36137490

RESUMO

Rev is an essential regulatory protein of Human Immunodeficiency Virus type 1 (HIV) that is found in the nucleus of infected cells. Rev multimerizes on the Rev-response element (RRE) of HIV RNA to facilitate the export of intron-containing HIV mRNAs from the nucleus to the cytoplasm, and, as such, HIV cannot replicate in the absence of Rev. We have developed cell-intact and cell-free assays based upon a robust firefly split-luciferase complementation system, both of which quantify Rev-Rev interaction. Using the cell-based system we show that additional Crm1 did not impact the interaction, whereas excess Rev reduced it. Furthermore, when a series of mutant Revs were tested, there was a strong correlation between the results of the cell-based assay and the results of a functional Rev trans-complementation infectivity assay. Of interest, a camelid nanobody (NB) that was known to inhibit Rev function enhanced Rev-Rev interaction in the cell-based system. We observed a similar increase in Rev-Rev interaction in a cell-free system, when cell lysates expressing Rev-NLUC or CLUC-Rev were simply mixed. In the cell-free system Rev-Rev interaction occurred within minutes and was inhibited by excess Rev. The levels of interaction between the mutant Revs tested varied by mutant type. Treatment of Rev lysates with RNAse minimally reduced the degree of interaction whereas addition of HIV RRE RNA enhanced the interaction. Purified GST-Rev protein inhibited the interaction. The Z-factor (Z') for the cell-free system was ∼0.85 when tested in 96-well format, and the anti-Rev NB enhanced the interaction in the cell-free system. Thus, we have developed both cell-intact and cell-free systems that can reliably, rapidly, and reproducibly quantify Rev-Rev interaction. These assays, particularly the cell-free one, may be useful in screening and identifying compounds that inhibit Rev function on a high throughput basis.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Produtos do Gene rev do Vírus da Imunodeficiência Humana/genética , Produtos do Gene rev do Vírus da Imunodeficiência Humana/metabolismo , HIV-1/fisiologia , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Produtos do Gene rev/genética , Produtos do Gene rev/metabolismo , RNA/metabolismo , Ribonucleases/metabolismo , RNA Viral/genética
13.
Anal Chem ; 94(40): 13700-13709, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36135776

RESUMO

Identification of protein-protein interactions (PPIs) that occur in various cellular processes helps to reveal their potential molecular mechanisms, and there is still an urgent need to develop the assays to explore PPIs in living subjects. Here, we reported a near-infrared split luciferase complementation assay (SLCA) with enhanced bioluminescence produced by cleaving a luciferase, Akaluc, for exploring and visualizing PPIs in living cells and live mice. Compared with the previously developed and widely used red SLCA based on split firefly luciferase (Fluc-SLCA), the signal intensities for PPI recognition in living cells and live mice of the Akaluc-SLCA increased by ∼3.79-fold and ∼18.06-fold in the measured condition, respectively. Additionally, the interactions between the nucleocapsid protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and cellular RNA processing proteins were identified, and the drug evaluation assays were also performed in living cells using Akaluc-SLCA. This study provides a new tool in the near-infrared region for the identification of PPIs in living cells and in vivo and new information for the understanding and treatment of SARS-CoV-2.


Assuntos
COVID-19 , Luciferases de Vaga-Lume , Animais , Avaliação de Medicamentos , Luciferases/genética , Luciferases de Vaga-Lume/metabolismo , Camundongos , Proteínas do Nucleocapsídeo , SARS-CoV-2
14.
Sci Rep ; 12(1): 14815, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36045277

RESUMO

Luciferin biosynthetic origin and alternative biological functions during the evolution of beetles remain unknown. We have set up a bioluminescent sensing method for luciferin synthesis from cysteine and benzoquinone using E. coli and Pichia pastoris expressing the bright Amydetes vivianii firefly and P. termitilluminans click beetle luciferases. In the presence of D-cysteine and benzoquinone, intense bioluminescence is quickly produced, indicating the expected formation of D-luciferin. Starting with L-cysteine and benzoquinone, the bioluminescence is weaker and delayed, indicating that bacteria produce L-luciferin, and then racemize it to D-luciferin in the presence of endogenous esterases, CoA and luciferase. In bacteria the p-benzoquinone toxicity (IC50 ~ 25 µM) is considerably reduced in the presence of cysteine, maintaining cell viability at 3.6 mM p-benzoquinone concomitantly with the formation of luciferin. Transcriptional analysis showed the presence of gene products involved with the sclerotization/tanning in the photogenic tissues, suggesting a possible link between these pathways and bioluminescence. The lack of two enzymes involved with the last steps of these pathways, indicate the possible accumulation of toxic quinone intermediates in the lanterns. These results and the abundance of cysteine producing enzymes suggest that luciferin first appeared as a detoxification byproduct of cysteine reaction with accumulated toxic quinone intermediates during the evolution of sclerotization/tanning in Coleoptera.


Assuntos
Besouros , Luciferina de Vaga-Lumes , Luciferases de Vaga-Lume , Quinonas , Animais , Besouros/metabolismo , Cisteína/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Vaga-Lumes/genética , Luciferina de Vaga-Lumes/metabolismo , Luciferases/genética , Luciferases/metabolismo , Luciferases de Vaga-Lume/metabolismo , Luciferinas , Medições Luminescentes , Quinonas/metabolismo , Saccharomycetales/metabolismo
15.
Methods Mol Biol ; 2525: 93-107, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836062

RESUMO

Alongside the intracellular transport of nutrients needed for cellular homeostasis, great efforts exist to effectively deliver substances such as proteins and genes into the cell for therapy, gene editing, disease diagnosis, and more. To evaluate the intracellular delivery of such substances, conventional methods impose semi-quantifications and discrete measures of the dynamic process of cellular internalization. Herein, we detail the methods to quantify cell internalization kinetics in real-time using individually nano-encapsulated bioluminescent Firefly Luciferase (FLuc) enzymes as probes. We include a comprehensive protocol to synthesize and characterize the encapsulated FLuc, assay the real-time bioluminescence (BL) in cells, and analyze the real-time BL profile to extract key parameters of cell internalization kinetics. Quantifying the kinetics of intracellular delivery offers the opportunity to resolve the underlying mechanisms governing membrane translocation and provide measures reflecting cellular state and metabolism while playing a critical role in the clinical development of effective vectors.


Assuntos
Bioensaio , Luciferases de Vaga-Lume , Transporte Biológico , Cinética , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Medições Luminescentes/métodos
16.
Methods Mol Biol ; 2524: 53-58, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35821462

RESUMO

Due to the strict enantioselectivity of firefly luciferase (FLuc), only D-luciferin can be used as a substrate for the bioluminescence (BL) reaction. Unfortunately, luciferin racemizes easily and accumulation of nonluminous L-luciferin has negative influences on the light-emitting reaction. By a detailed analysis of luciferin chirality, however, it becomes clarified that L-luciferin is the biosynthetic precursor of D-luciferin in fireflies and undergoes the enzymatic chiral inversion. By the chiral inversion reaction, the enantiopurity of luciferin can be maintained in the reaction mixture for applications using FLuc. Thus, chirality is crucial for the BL reaction and essential for investigating and applying the biosynthesis of D-luciferin. Here, we describe the methods for the analysis of chiral inversion reaction using high-performance liquid chromatography (HPLC) with a chiral column. We also introduce an example of an in vitro deracemizative BL reaction system using a combination of FLuc and fatty acyl-CoA thioesterase, which is inspired by the chiral inversion mechanism in the biosynthetic pathway of D-luciferin.


Assuntos
Luciferina de Vaga-Lumes , Luciferinas , Animais , Vaga-Lumes , Luciferina de Vaga-Lumes/química , Luciferases/genética , Luciferases/metabolismo , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo
17.
Viruses ; 14(5)2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35632716

RESUMO

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2, SARS2) remains a great global health threat and demands identification of more effective and SARS2-targeted antiviral drugs, even with successful development of anti-SARS2 vaccines. Viral replicons have proven to be a rapid, safe, and readily scalable platform for high-throughput screening, identification, and evaluation of antiviral drugs against positive-stranded RNA viruses. In the study, we report a unique robust HIV long terminal repeat (LTR)/T7 dual-promoter-driven and dual-reporter firefly luciferase (fLuc) and green fluorescent protein (GFP)-expressing SARS2 replicon. The genomic organization of the replicon was designed with quite a few features that were to ensure the replication fidelity of the replicon, to maximize the expression of the full-length replicon, and to offer the monitoring flexibility of the replicon replication. We showed the success of the construction of the replicon and expression of reporter genes fLuc and GFP and SARS structural N from the replicon DNA or the RNA that was in vitro transcribed from the replicon DNA. We also showed detection of the negative-stranded genomic RNA (gRNA) and subgenomic RNA (sgRNA) intermediates, a hallmark of replication of positive-stranded RNA viruses from the replicon. Lastly, we showed that expression of the reporter genes, N gene, gRNA, and sgRNA from the replicon was sensitive to inhibition by Remdesivir. Taken together, our results support use of the replicon for identification of anti-SARS2 drugs and development of new anti-SARS strategies targeted at the step of virus replication.


Assuntos
Replicon , SARS-CoV-2 , Antivirais/farmacologia , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Regiões Promotoras Genéticas , RNA Guia de Cinetoplastídeos , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Replicação Viral/efeitos dos fármacos
18.
Photochem Photobiol ; 98(5): 1077-1083, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35132643

RESUMO

For the first time, recombinant Escherichia coli cells expressing thermostable Luciola mingrelica firefly luciferase were used to study the effect of the membrane-active antibiotic colistin on live cells. Simple, fast, and highly sensitive bioluminescent methods were developed for measurement of luciferase activity and ATP concentration inside and outside E. coli cells incubated in a nutrient medium, or in saline. Luciferase proved to be an informative protein marker for detecting the irreversible changes in cell membrane permeability. The study of kinetics of intra- and extracellular ATP concentration at different concentrations of colistin showed that the rate of decrease in intracellular ATP concentration significantly exceeded the rate of accumulation of extracellular ATP concentration. This fact could not be explained only by the release of ATP from the cell with an increase in the permeability of the outer cell membrane under the action of colistin. The loss of a significant part of intracellular ATP in presence of the colistin is probably due to a decrease in the activity of the respiratory chain enzymes and ATP synthase which operate in the cytoplasmic cell membrane, which leads to a decrease in the rate of ATP synthesis or even to its halt.


Assuntos
Besouros , Luciferases de Vaga-Lume , Trifosfato de Adenosina/metabolismo , Animais , Antibacterianos/farmacologia , Colistina/farmacologia , Escherichia coli/metabolismo , Luciferases/genética , Luciferases/metabolismo , Luciferases de Vaga-Lume/metabolismo
19.
Drug Metab Dispos ; 50(3): 277-286, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34887255

RESUMO

Bioluminescent imaging (BLI) is a powerful tool in biomedical research to measure gene expression and tumor growth. The current study examined factors that influence the BLI signal, specifically focusing on the tissue distribution of two luciferase substrates, D-luciferin and CycLuc1. D-luciferin, a natural substrate of firefly luciferase, has been reported to have limited brain distribution, possibly due to the efflux transporter, breast cancer resistance protein (Bcrp), at the blood-brain barrier. CycLuc1, a synthetic analog of D-luciferin, has a greater BLI signal at lower doses than D-luciferin, especially in the brain. Our results indicate that limited brain distribution of D-luciferin and CycLuc1 is predominantly dictated by their low intrinsic permeability across the cell membrane, where the efflux transporter, Bcrp, plays a relatively minor role. Both genetic ablation and pharmacological inhibition of Bcrp decreased the systemic clearance of both luciferase substrates, significantly increasing exposure in the blood and, hence, in organs and tissues. These data also indicate that the biodistribution of luciferase substrates can be differentially influenced in luciferase-bearing tissues, leading to a "tissue-dependent" BLI signal. The results of this study point to the need to consider multiple mechanisms that influence the distribution of luciferase substrates. SIGNIFICANCE STATEMENT: Bioluminescence is used to monitor many biological processes, including tumor growth. This study examined the pharmacokinetics, brain distribution, and the role of active efflux transporters on the luciferase substrates D-luciferin and CycLuc1. CycLuc1 has a more sustained systemic circulation time (longer half-life) that can provide an advantage for the superior imaging outcome of CycLuc1 over D-luciferin. The disparity in imaging intensities between brain and peripheral sites is due to low intrinsic permeability of these luciferase substrates across the blood-brain barrier.


Assuntos
Neoplasias Encefálicas , Medições Luminescentes , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Neoplasias Encefálicas/diagnóstico por imagem , Humanos , Luciferases/metabolismo , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Medições Luminescentes/métodos , Proteínas de Neoplasias/metabolismo , Distribuição Tecidual
20.
Methods Mol Biol ; 2398: 205-213, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34674178

RESUMO

Split firefly luciferase complementation assay (FLCA) is one of the most widely used sensitive and reliable methods for the analysis of constitutive and dynamic protein-protein interactions (PPIs). Here, we report a method for long-term in vivo detects plant protein-protein interactions in Arabidopsis F1 hybrids via Topcount™ Microplate Scintillation Counter or Deep-Cooled CCD camera. Following these protocols, we successfully detected time-dependent PPIs of EARLY FLOWERING 3 (ELF3) and EARLY FLOWERING 4 (ELF4); both of them with LUX ARRHYTHMO (LUX) belong to an evening complex which has been found to play a key role in circadian rhythms, flowering, and growth.


Assuntos
Arabidopsis , Relógios Circadianos , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ritmo Circadiano , Regulação da Expressão Gênica de Plantas , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...